(本小题满分14分)设数列满足,,.数列满足,是非零整数,且对任意的正整数和自然数,都有.(1)求数列和的通项公式;(2)记,求数列的前项和.
(本小题12分)已知圆C:,其中为实常数.(1)若直线l:被圆C截得的弦长为2,求的值;(2)设点,0为坐标原点,若圆C上存在点M,使|MA|="2" |MO|,求的取值范围.
(本小题12分)已知等差数列满足:.(1)求的通项公式;(2)若(),求数列的前n项和.
(本小题12分)如图,已知平面,,是正三角形,AD=DEAB,且F是CD的中点.(1)求证:AF//平面BCE;(2)求证:平面BCE⊥平面CDE.
(本小题12分)已知向量,,函数的最大值为6.(Ⅰ)求;(Ⅱ)将函数的图象向左平移个单位,再将所得图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图象.求在上的值域.
(本小题满分14分)已知函数.(Ⅰ)函数在区间上是增函数还是减函数?证明你的结论;(Ⅱ)当时,恒成立,求整数的最大值;(Ⅲ)试证明:()。