已知数列 { a n } 和 { b n } 满足: a 1 = λ , a n + 1 = 2 3 a n + n - 4 , b n = ( - 1 ) n ( a n - 3 n + 21 ) 其中 λ 为实数, n 为正整数。 (Ⅰ)对任意实数 λ ,证明数列 { a n } 不是等比数列; (Ⅱ)试判断数列 { b n } 是否为等比数列,并证明你的结论; (Ⅲ)设 0 < a < b , S n 为数列 { b n } 的前 n 项和。是否存在实数 λ ,使得对任意正整数 n ,都有 a < S n < b ?若存在,求 λ 的取值范围;若不存在,说明理由。
(本小题共12分)如图所示,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2, F为CE上的点,且BF⊥平面ACE (1)求证:AE⊥平面BCE; (2)求证:AE∥平面BFD;
(本小题共12分)将一颗骰子先后抛掷2次,观察向上的点数,求: (1)两数之和为5的概率; (2)两数中至少有一个奇数的概率; (3)以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=15的内部的概率.
(本小题共12分) 设函数的最大值为,最小正周期为. (Ⅰ)求、; (Ⅱ)若有10个互不相等的正数满足 求的值.
不等式选讲 已知均为正实数,且.求的最大值.
坐标系与参数方程 已知直线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,在曲线上求一点,使它到直线的距离最小,并求出该点坐标和最小距离.