已知函数的最大值为2.(1)求函数在上的单调递减区间;(2)△ABC中,,角A、B、C所对的边分别是a、b、c,且C=60,c=3,求△ABC的面积.
已知椭圆E的中心在原点,焦点在x轴上,椭圆上的点到焦点的距离的最小值为,离心率e=.(Ⅰ) 求椭圆E的方程;(Ⅱ) 过点(1,0)作直线交E于P、Q两点,试问在x轴上是否存在一定点M,使为定值?若存在,求出定点M的坐标;若不存在,请说明理由.
设点F(0,),动圆P经过点F且和直线y=相切,记动圆的圆心P的轨迹为曲线W.⑴求曲线W的方程;⑵过点F作相互垂直的直线,,分别交曲线W于A,B和C,D.①求四边形ABCD面积的最小值;②分别在A,B两点作曲线W的切线,这两条切线的交点记为Q,求证:QA⊥QB,且点Q在某一定直线上。
在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东且与点A相距40海里的位置B,经过40分钟又测得该船已行驶到点A北偏东+(其中sin=,)且与点A相距10海里的位置C. (I)求该船的行驶速度(单位:海里/小时);(II)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.
已知向量m=(sinA,cosA),n=,m·n=1,且A为锐角.(Ⅰ)求角A的大小;(Ⅱ)求函数的值域.
已知函数.(1)若,求的值;(2)设三内角所对边分别为且,求在上的值域.