数列 { a n } 为等差数列, a n 为正整数,其前 n 项和为 S n ,数列 { b n } 为等比数列,且 a 1 = 3 , b 1 = 1 ,数列 { b a n } 是公比为64的等比数列, b 2 S 2 = 64 。 (1)求 a n , b n ;
(2)求证 1 S 1 + 1 S 2 + ⋯ + 1 S n < 3 4 .
编号为的16名篮球运动员在某次训练比赛中的得分记录如下:
(Ⅰ)将得分在对应区间内的人数填入相应的空格;
(Ⅱ)从得分在区间【20,30)内的运动员中随机抽取2人,(i)用运动员的编号列出所有可能的抽取结果;(ii)求这2人得分之和大于50的概率.
已知各项都不相等的等差数列的前项和为,且为和的等比中项.(I) 求数列的通项公式;(II) 若数列满足,且,求数列的前项和.
已知数列满足:1)求的值; 2)求证数列是等差数列,并求数列的通项公式;3)设若恒成立,求实数的取值范围.
某企业投资1千万元于一个高科技项目,每年可获利25%.由于企业间竞争激烈,每年底需要从利润中取出资金万元进行科研、技术改造与广告投入,方能保持原有的利润增长率.设经过年后该项目的资金为万元.1)写出数列的前三项,并猜想写出通项.2)求经过多少年后,该项目的资金可以达到或超过千万元.
设满足约束条件:的可行域为1)在所给的坐标系中画出可行域(用阴影表示,并注明边界的交点或直线);2)求的最大值与的最小值;3)若存在正实数,使函数的图象经过区域中的点,求这时的取值范围.