数列 { a n } 为等差数列, a n 为正整数,其前 n 项和为 S n ,数列 { b n } 为等比数列,且 a 1 = 3 , b 1 = 1 ,数列 { b a n } 是公比为64的等比数列, b 2 S 2 = 64 。 (1)求 a n , b n ;
(2)求证 1 S 1 + 1 S 2 + ⋯ + 1 S n < 3 4 .
(1)判断函数奇偶性,并给出证明; (2)求函数的值域。
(本小题满分12分) 已知函数R). (Ⅰ)若a=1,函数的图象能否总在直线的下方?说明理由; (Ⅱ)若函数在(0,2)上是增函数,求a的取值范围; (Ⅲ)设为方程的三个根,且,,,求证:或
(本小题满分12分) 设函数,已知 是奇函数. (Ⅰ)求、的值; (Ⅱ)求的单调区间与极值.
(本小题满分12分) 已知; q:, 若是的充分不必要条件,求实数的取值范围。
(本小题满分12分) 设函数若, 求关于的方程的解集.