数列 { a n } 为等差数列, a n 为正整数,其前 n 项和为 S n ,数列 { b n } 为等比数列,且 a 1 = 3 , b 1 = 1 ,数列 { b a n } 是公比为64的等比数列, b 2 S 2 = 64 。 (1)求 a n , b n ;
(2)求证 1 S 1 + 1 S 2 + ⋯ + 1 S n < 3 4 .
在正方体ABCD-A1B1C1D1中,求证:AC1BD.
如图,AA1,BB1,CC1不共面,BB1//AA1且BB1=AA1, CC1 //AA1且CC1=AA1. 求证:ABCA1B1C1。
已知函数. (Ⅰ)求函数的单调区间; (Ⅱ)若对定义域每的任意恒成立,求实数的取值范围; (Ⅲ)证明:对于任意正整数,不等式恒成立。
如图,侧棱垂直底面的三棱柱的底面位于平行四边形中,,,,点为中点. (Ⅰ)求证:平面平面. (Ⅱ)设二面角的大小为,直线与平面所成的角为,求的值.
在中,,设,,,现定义. (Ⅰ)向量是否一定共线?为什么? (Ⅱ)试分别求函数的最大值与最小值.