数列 { a n } 为等差数列, a n 为正整数,其前 n 项和为 S n ,数列 { b n } 为等比数列,且 a 1 = 3 , b 1 = 1 ,数列 { b a n } 是公比为64的等比数列, b 2 S 2 = 64 。 (1)求 a n , b n ;
(2)求证 1 S 1 + 1 S 2 + ⋯ + 1 S n < 3 4 .
设函数. (1)若,求函数的单调区间; (2)若函数在定义域上是单调函数,求的取值范围; (3)若,证明对任意,不等式…都成立。
已知函数,点在函数的图象上,过P点的切线方程为. (1)若在时有极值,求的解析式; (2)在(1)的条件下是否存在实数m,使得不等式m在区间上恒成立,若存在,试求出m的最大值,若不存在,试说明理由。
中,角的对边分别为,且. (1)判断的形状; (2)设向量且求.
设函数,若不等式的解集为(-1,3)。 (1)求的值; (2)若函数上的最小值为1,求实数的值。
在中,角的对边分别为已知. (1)求的值; (2)若,求的面积S的值。