函数的定义域为,且满足对任意,有(1) 求的值;(2) 判断的奇偶性并证明你的结论;(3) 如果,,且在上是增函数,求的取值范围.
已知的顶点,过点的内角平分线所在直线方程是,过点C的中线所在直线的方程是(1)求顶点B的坐标;(2)求直线BC的方程;
已知函数(1)若,求的值;(2)求的值.
已知椭圆的左、右焦点分别为、,椭圆上的点满足,且的面积.(Ⅰ)求椭圆的方程;(Ⅱ)是否存在直线,使与椭圆交于不同的两点、,且线段恰被直线平分?若存在,求出的斜率取值范围;若不存在,请说明理由.
经调查统计,某种型号的汽车在匀速行驶中,每小时的耗油量(升)关于行驶速度(千米/时)的函数可表示为.已知甲、乙两地相距千米,在匀速行驶速度不超过千米/时的条件下,该种型号的汽车从甲地 到乙地的耗油量记为(升).(Ⅰ)求函数的解析式;(Ⅱ)讨论函数的单调性,当为多少时,耗油量为最少?最少为多少升?
如图,四棱锥中,底面是菱形,,,,,,是的中点,上的点满足.(Ⅰ)求证:平面;(Ⅱ)求三棱锥的体积.