如图,正三棱锥 O - A B C 的三条侧棱 O A , O B , O C 两两垂直,且长度均为2. E , F 分别是 A B , A C 的中点, H 是 E F 的中点,过 E F 作平面与侧棱 O A , O B , O C 或其延长线分别相交于 A 1 , B 1 , C 1 ,已知 O A 1 = 3 2 。
(1)求证: B 1 C 1 ⊥ 平面 O A H ; (2)求二面角 O - A 1 B 1 - C 1 的大小。
设、分别是椭圆 的左、右焦点,.(Ⅰ)若是该椭圆上的一个动点,求的最大值和最小值;(Ⅱ)若C为椭圆上异于B一点,且,求的值;(Ⅲ)设P是该椭圆上的一个动点,求的周长的最大值.
在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD.(Ⅰ)证明AB⊥平面VAD.(Ⅱ)求面VAD与面VDB所成的二面角的余弦值.
设数列的前项和为,且,其中为常数,且 (Ⅰ)证明:数列是等比数列;(Ⅱ)设数列的公比,数列满足,(求数列的通项公式;(Ⅲ)设,,数列的前项和为
某校从参加高一年级期末考试的学生中抽出60名学生,并统计了他们的物理成绩(成绩均为整数且满分为100分),把其中不低于50分的分成五段,…后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:(Ⅰ)求出物理成绩低于50分的学生人数;(Ⅱ)估计这次考试物理学科及格率(60分及以上为及格)(Ⅲ)从物理成绩不及格的学生中选两人,求他们成绩至少有一个不低于50分的概率.
在中,角A,B,C所对的边分别为a,b,c,且(1)求角B的大小; (2)若,且,求的最小值.