为进行科学实验,观测小球A、B在两条相交成角的直线型轨道上运动的情况,如图(乙)所示,运动开始前,A和B分别距O点3m和1m,后来它们同时以每分钟4m的速度各沿轨道按箭头的方向运动。问:(1)运动开始前,A、B的距离是多少米?(结果保留三位有效数字)。(2)几分钟后,两个小球的距离最小?
如图,在四棱锥中,平面,底面是一个直角梯形,,。 (1)若为的中点,证明:直线∥平面; (2)求二面角的余弦值。
在某电视节目的一次有奖竞猜活动中,主持人准备了A、B两个相互独立的问题,并且宣布:幸运观众答对问题A可获资金1000元,答对问题B可获得奖金2000元,先回答哪个题由观众自由选择,但只有第一个问题答对,才能再答第二题,否则终止答题。若你被选为幸运观众,且假设你答对问题A、B的概率分别为。 (1)记先回答问题A获得的奖金数为随机变量,求的分布列及期望。 (2)你觉得应先回答哪个问题才能使你更多的奖金?请说明理由。
(本小题满分12分)一个四棱锥的直观图和三视图如图所示:
已知直角坐标平面内点到点与点的距离之和为 (Ⅰ)试求点的轨迹的方程; (Ⅱ)若斜率为的直线与轨迹交于、两点,点为轨迹上一点,记直线的斜率为,直线的斜率为,试问:是否为定值?请证明你的结论.
(本小题满分12分)已知向量,. (1)若,分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足的概率; (2)若,求满足的概率.