(理)如图9-6-6,矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD(1)问BC边上是否存在Q点,使⊥,说明理由.(2)问当Q点惟一,且cos<,>=时,求点P的位置.
如图所示,圆O的两弦AB和CD交于点E,EF∥CB,EF交AD的延长线于点F,FG切圆O于点G.(1)求证:△DFE∽△EFA;(2)如果EF=1,求FG的长.
从⊙O外一点P引圆的两条切线PA,PB及一条割线PCD,A,B为切点.求证:=.
已知:如图所示,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,DE⊥AC于E,DF⊥BC于F.求证:AE·BF·AB=CD3.
已知:如图所示,在△ABC中,D是BC的中点,F是BA延长线上的点,FD与AC交于点E.求证:AE·FB=EC·FA.
如图所示,已知D为△ABC的BC边上一点,⊙O1经过点B,D,交AB于另一点E,⊙O2经过点C,D,交AC于另一点F,⊙O1与⊙O2交于点G.(1)求证:∠EAG=∠EFG;(2)若⊙O2的半径为5,圆心O2到直线AC的距离为3,AC=10,AG切⊙O2于G,求线段AG的长.