如图,四棱锥P—ABCD的底面是AB=2,BC=的矩形,侧面PAB是等边三角形,且侧面PAB⊥底面ABCD(I)证明:侧面PAB⊥侧面PBC;(II)求侧棱PC与底面ABCD所成的角;(III)求直线AB与平面PCD的距离.
为了解《中华人民共国道路交通安全法》在学生中的普及情况,调查部门对某学校6名学生进行问卷调查,6人得分情况如下: 5,6,7,8,9,10。 把这6名学生的得分看成一个总体。 (1)求该总体的平均数; (2)求该总体的的方差; (3)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本,求该样本平均数于总体平均数之差的绝对值不超过0.5的概率。
若以连续掷两次骰子分别得到的点数m、n作为点P的坐标,求: (1)点P在直线上的概率; (2)点P在圆外的概率。
甲、乙两人独立地破译1个密码, 他们能译出密码的概率分别为和, 求: (1)甲、乙两人至少有一个人破译出密码的概率; (2)两人都没有破译出密码的概率.
为了让学生了解更多“社会法律”知识,某中学举行了一次“社会法律知识竞赛”,共有800名学生参加了这次竞赛. 为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表,解答下列问题:
(1)若用系统抽样的方法抽取50个样本,现将所有学生随机地编号为 000,001,002,…,799,试写出第二组第一位学生的编号; (2)填充频率分布表的空格①②③④并作出频率分布直方图; (3)若成绩在85.5~95.5分的学生为二等奖,问参赛学生中获得二等奖的学生约为多少人?
某射手在一次射击中射中10环、9环、8环、7环, 7环以下的概率 分别为0.24,0.28,0.19,0.16,0.13,计算这个射手在一次射击中: (1)射中10环或9环的概率; (2)至少射中7环的概率; (3)射中环数不是8环的概率。