某校组织一次冬令营活动,有8名同学参加,其中有5名男同学,3名女同学,为了活动的需要,要从这8名同学中随机抽取3名同学去执行一项特殊任务,记其中有X名男同学.(1)求X的概率分布;(2)求去执行任务的同学中有男有女的概率.
已知数列 (I)若a1=2,证明是等比数列; (II)在(I)的条件下,求的通项公式; (III)若,证明数列{||}的前n项和Sn满足Sn<1.
直角三角形的直角顶点为动点,,为两个定点,作于,动点满足,当点运动时,设点的轨迹为曲线,曲线与轴正半轴的交点为. (Ⅰ) 求曲线的方程; (Ⅱ) 是否存在方向向量为m的直线,与曲线交于,两点,且与的夹角为?若存在,求出所有满足条件的直线方程;若不存在,说明理由.
过直角坐标平面中的抛物线的焦点作一条倾斜角为的直线与抛物线相交于A,B两点。 (1)用表示A,B之间的距离; (2)证明:的大小是与无关的定值,并求出这个值。
在一个圆形波浪实验水池的中心有三个振动源,假如不计其它因素,在t秒内,它们引发的水面波动可分别由函数和描述。如果两个振动源同时启动,则水面波动由两个函数的和表达。在某一时刻使这三个振动源同时开始工作,那么,原本平静的水面将呈现怎样的状态,请说明理由
设,试求下述方程有解时k的取值范围。