((本小题满分14分)如图,四棱锥的底面是正方形,侧棱底面,,、分别是棱、的中点. (1)求证:; (2) 求直线与平面所成的角的正切值
若x,y满足约束条件 (1)求目标函数z=x-y+的最值. (2)若目标函数z=ax+2y仅在点(1,0)处取得最小值,求a的取值范围.
已知函数f(x)=x2+2x+a. (1)当a=时,求不等式f(x)>1的解集. (2)若对于任意x∈[1,+∞),f(x)>0恒成立,求实数a的取值范围.
已知a,b,c,d∈R,用分析法证明:ac+bd≤并指明等号何时成立.
已知等比数列{an}满足an+1+an=9·2n-1,n∈N*. (1)求数列{an}的通项公式. (2)设数列{an}的前n项和为Sn,若不等式Sn>kan-2对一切n∈N*恒成立,求实数k的取值范围.
已知首项为的等比数列{an}的前n项和为Sn(n∈N*),且-2S2,S3,4S4成等差数列. (1)求数列{an}的通项公式. (2)证明Sn+≤(n∈N*).