(本小题满分12分) 已知函数.(1)当时,求函数的单调区间和极值;(2)对任意给定的正实数,曲线上是否存在两点,,使得△是以为直角顶点的直角三角形,且此三角形斜边中点在轴上?
已知函数(),(1)求函数的最小值;(2)已知,:关于的不等式对任意恒成立;:函数是增函数.若“或”为真,“且”为假,求实数的取值范围.
已知函数,(a为实数).(1)当a=5时,求函数在处的切线方程;(2)求在区间上的最小值;(3)若存在两不等实数,使方程成立,求实数a的取值范围.
为改善购物环境,提高经济效益,某商场决定投资800万元改造商场内部环境,据调查,改造好购物环境后,任何一个月内(每月按30天计算)每天的顾客人数与第x天近似地满足(千人),且每位顾客人均购物金额数近似地满足(元).(1)求该商场第x天的销售收入(单位千元,1≤x≤30,)的函数关系;(2)若以最低日收入的20%作为每一天纯收入的计量依据,商场决定以每日纯收入的5%收回投资成本,试问商场在两年内能否收回全部投资成本.
已知等差数列的前n项和为,(1)求数列的通项公式;(2)设 ,求数列的前n项和.
已知向量,函数.(1)求函数f(x)的最小正周期T;(2)已知a,b,c分别为△ABC内角A,B,C的对边,其中A为锐角,a=,c=4,且f(A)=1,求△ABC的面积S.