为改善购物环境,提高经济效益,某商场决定投资800万元改造商场内部环境,据调查,改造好购物环境后,任何一个月内(每月按30天计算)每天的顾客人数与第x天近似地满足(千人),且每位顾客人均购物金额数近似地满足(元).(1)求该商场第x天的销售收入(单位千元,1≤x≤30,)的函数关系;(2)若以最低日收入的20%作为每一天纯收入的计量依据,商场决定以每日纯收入的5%收回投资成本,试问商场在两年内能否收回全部投资成本.
已知函数的定义域为, (1)求; (2)当时,求函数的最大值。
已知函数。 (1)求的振幅和最小正周期; (2)求当时,函数的值域; (3)当时,求的单调递减区间。
已知奇函数 (1)求实数m的值,并在给出的直角坐标系中画出的图象; (2)若函数在区间[-1,-2]上单调递增,试确定的取值范围.
已知集合,。 (1)若,求、; (2)若,求的值。
(本小题满分14分) 已知函数的一系列对应值如下表:
(1)根据表格提供的数据求函数的一个解析式; (2)根据(1)的结果,若函数周期为,当时,方程恰有两个不同的解,求实数的取值范围.