“校园手机”现象越来越受到社会的关注.小丽在“统计实习”活动中随机调查了学校若干名学生家长对“中学生带手机到学校”现象的看法,统计整理并制作了如下的统计图: (1)求这次调查的家长总数及家长表示“无所谓”的人数,并补全图①;(2)求图②中表示家长“无所谓”的圆心角的度数;(3)从这次接受调查的家长中,随机抽查一个,恰好是“不赞成”态度的家长的概率是多少?
如图,在平面直角坐标系中,A(1, 2),B(3, 1),C(-2, -1).(1)在图中作出关于轴对称的.(2)写出点的坐标.A1 _________ B1 ________ C1 ________.
如图,分别以△ABC的边AB、AC向外作等边△ABE和等边△ACD,直线BD与直线CE相交于点O.(1)求证:CE=BD;(2)如果当点A在直线BC的上方变化位置,且保持∠ABC和∠ACB都是锐角,那么∠BOC的度数是否会发生变化?若变化,请说明理由;若不变化,请求出∠BOC的度数:(3)如果当点A在直线BC的上方变化位置,且保持∠ACB是锐角,那么∠BOC的度数是否会发生变化?若变化,请直接写出变化的结论,不需说明理由;若不变化,请直接写明结论.
如图,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D、E,F为BC中点,BE与DF,DC分别交于点G,H,∠ABE=∠CBE.(1)求证:BH=AC;(2)求证:BG2-GE2=EA2.
师在一次“探究性学习”课中,给出如下数表:(1)请你分别认真观察线段a、b、c的长与n之间的关系,用含n(n为自然数,且n>1)的代数式表示:a= ,b= ,c= .(2)猜想:以线段a、b、c为边的三角形是否是直角三角形?并说明你的理由.
如图,在△ABC中,AB=AC,D为AB上一点,E为AC延长线上的一点,且CE=BD,连接DE交BC于点P.求证:PD=PE.