在直角坐标系中,以为圆心的圆与直线相切.(Ⅰ)求圆的方程;(Ⅱ)圆与轴相交于两点,圆内的动点使成等比数列,求的取值范围(结果用区间表示).:
直角坐标系和极坐标系的原点与极点重合,轴正半轴与极轴重合,单位长度相同,在直角坐标系下,曲线C的参数方程为为参数)。(1)在极坐标系下,曲线C与射线和射线分别交于A,B两点,求的面积;(2)在直角坐标系下,直线的参数方程为(为参数),求曲线C与直线的交点坐标。
如图所示,已知PA是⊙O相切,A为切点,PBC为割线,弦CD//AP,AD、BC相交于E点,F为CE上一点,且(1)求证:A、P、D、F四点共圆;(2)若AE·ED=24,DE=EB=4,求PA的长。
已知函数的导数为实数,.(Ⅰ)若在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;(Ⅱ)在(Ⅰ)的条件下,求经过点且与曲线相切的直线的方程;(Ⅲ)设函数,试判断函数的极值点个数。
如图,已知椭圆的左焦点为,过点的直线交椭圆于两点,线段的中点为,的中垂线与轴和轴分别交于两点.(1)若点的横坐标为,求直线的斜率;(2)记△的面积为,△(为原点)的面积为.试问:是否存在直线,使得?说明理由.
已知直三棱柱的三视图如图所示,是的中点.(Ⅰ)求证:∥平面;(Ⅱ)求二面角的余弦值;(Ⅲ)试问线段上是否存在点,使与成 角?若存在,确定点位置,若不存在,说明理由.