已知tanx=2,求下列各式的值:
已知在平面直角坐标系中,直线的参数方程是(是参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)判断直线与曲线的位置关系;(2)为曲线上任意一点,求的取值范围.
如图,已知与圆相切于点,经过点的割线交圆于点,,的平分线分别交,于点,.(1)证明:;(2)若,求的值.
已知函数和.(1)若函数在区间不单调,求实数的取值范围;(2)当时,不等式恒成立,求实数的最大值.
已知椭圆()的离心率为,左、右焦点分别为、,点在椭圆上,且,的面积为.(1)求椭圆的方程;(2)直线()与椭圆相交于,两点,点,记直线,的斜率分别为,,当最大时,求直线的方程.
年“双节”期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔辆就抽取一辆的抽样方法抽取名驾驶员进行询问调查,将他们在某段高速公路的车速(/)分成六段:,,,,,后得到如图的频率分布直方图.(1)求这辆小型车辆车速的众数和中位数的估计值;(2)若从车速在的车辆中任抽取辆,求车速在的车辆恰有一辆的概率.