已知函数,.(1)当时,若上单调递减,求a的取值范围;(2)求满足下列条件的所有整数对:存在,使得的最大值, 的最小值;
如图,在三棱锥中,平面平面,,.设,分别为,中点. (Ⅰ)求证:∥平面; (Ⅱ)求证:平面; (Ⅲ)试问在线段上是否存在点,使得过三点 ,,的平面内的任一条直线都与平面平行?若存在,指出点的位置并证明;若不存在,请说明理由.
甲、乙两名同学参加“汉字听写大赛”选拔性测试.在相同的测试条件下,两人5次测试的成绩(单位:分)如下表: (Ⅰ)请画出甲、乙两人成绩的茎叶图. 你认为选派谁参赛更好?说明理由(不用计算); (Ⅱ)若从甲、乙两人5次的成绩中各随机抽取一个成绩进行分析,求抽到的两个成绩中至少有一个高于 90分的概率.
已知函数. (Ⅰ)求的值; (Ⅱ)求函数的最小正周期及单调递增区间.
已知是正数,,,. (Ⅰ)若成等差数列,比较与的大小; (Ⅱ)若,则三个数中,哪个数最大,请说明理由; (Ⅲ)若,,(),且,,的整数部分分别是求所有的值.
已知椭圆两焦点坐标分别为,,且经过点. (Ⅰ)求椭圆的标准方程; (Ⅱ)已知点,直线与椭圆交于两点.若△是以为直角顶点的等腰直角三角形,试求直线的方程.