七年级十班为了表彰参加秋季运动会的队员,班主任特安排班长宋乐去商店买奖品,下面是宋乐与售货员的对话:宋乐:阿姨,您好!售货员:同学,你好,想买点什么?宋乐:我只有100元,请帮我安排买10支钢笔和15本笔记本.售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?
在平面直角坐标系xoy中,直线y="-x+3" 与x轴、y轴分别交于A、B,在△AOB内部作正方形,使正方形的四个顶点都落在该三角形的边上,求正方形落在x轴正半轴的顶点坐标。
先化简,再求值.,其中 x=tan600+2 .
如图,矩形ABOD的两边OB,OD都在坐标轴的正半轴上,OD=3,另两边与反比例函数(k≠0)的图象分别相交于点E、F,且DE=2.过点E作EH⊥x轴于点H,过点F作FG⊥EH于点G.回答下面的问题: (1)①求反比例函数的解析式. ②当四边形AEGF为正方形时,求点F的坐标. (2)小亮进一步研究四边形AEGF的特征后提出问题:“当AE>EG时,矩形AEGF与矩形DOHE能否全等?能否相似?” 针对小亮提出的问题,请你判断这两个矩形能否全等(直接写出结论即可).这两个矩形能否相似?若能相似,求出相似比;若不能相似,试说明理由.
如图,在△ABC中,D是BC边上的点(不与点B,C重合),连接AD. 问题引入: (1)如图①,当点D是BC边上的中点时,S△ABD︰S△ABC=________;当点D是BC边上任意一点时,S△ABD︰S△ABC=________(用图中已有线段表示). 探索研究: (2)如图②,在△ABC中,O点是线段AD上的一点(不与点A,D重合),连接BO,CO,试猜想S△BOC与S△ABC之比应该等于图中哪两条线段之比,并说明理由. 拓展应用: (3)如图③,O是线段AD上一点(不与点A,D重合),连接BO并延长交AC于点F,连接CO并延长交AB于点E,试猜想的值,并说明理由.
如图,双曲线(x>0)经过△OAB的顶点A和OB的中点C,AB∥x轴,点A的坐标为(2,3). (1)求k的值; (2)若点D(3,m)在双曲线上,求直线AD的解析式; (3)计算△OAB的面积.