已知圆: (1) 若平面上有两点(1 , 0),(-1 , 0),点P是圆上的动点,求使 取得最小值时点的坐标. (2)若是轴上的动点,分别切圆于两点① 若,求直线的方程;② 求证:直线恒过一定点.
(本小题10分) 已知集合全集 (1)求∪、()∩; (2)若∩,求实数的取值范围。
(本小题满分12分) 已知,过点作直线与抛物线交于两点,若两点纵坐标之积为. (1)求抛物线方程; (2)斜率为的直线不经过点且与抛物线交于 (Ⅰ)求直线在轴上截距的取值范围; (Ⅱ)若分别与抛物线交于另一点,证明:交于一定点.
(本小题满分12分) 设函数. (1)若函数的图象在点处的切线为直线l,且直线l与圆相切,求a的值; (2)当时,求函数f(x)的单调区间.
(本小题满分12分) 已知椭圆,分别为顶点,F为焦点,过F作轴的垂线交椭圆于点C,且直线与直线OC平行. (1)求椭圆的离心率; (2)已知定点M(),为椭圆上的动点,若的重心轨迹经过点,求椭圆的方程.
本小题满分12分) 如图,在棱长为a的正方体ABCD—A1B1C1D1中,E、F分别为棱AB和BC的中点,EF交BD于H。 (1)求二面角B1—EF—B的正切值; (2)试在棱B1B上找一点M,使D1M⊥平面EFB1,并证明你的结论.