(本小题满分14分)设函数(Ⅰ)研究函数的极值点;(Ⅱ)当p>0时,若对任意的x>0,恒有,求p的取值范围;(Ⅲ)证明:
如图,四棱锥的底面ABCD是平行四边形,,,面,设为中点,点在线段上且.(1)求证:平面;(2)设二面角的大小为,若,求的长.
如图,在平面直角坐标系中,平行于轴且过点(3,2)的入射光线被直线反射.反射光线交轴于点,圆过点且与都相切.(1)求所在直线的方程和圆的方程;(2)设分别是直线和圆上的动点,求的最小值及此时点的坐标.
(本小题满分8分)已知; ,若是的必要非充分条件,求实数的取值范围.
已知是关于的二次方程,的两个实数根,求:(1)的值;(2)的值.
在平面直角坐标系中,已知圆,圆. (1)若过点的直线被圆截得的弦长为,求直线的方程; (2)圆是以1为半径,圆心在圆:上移动的动圆 ,若圆上任意一点分别作圆 的两条切线,切点为,求的取值范围 ;
(3)若动圆同时平分圆的周长、圆的周长,则动圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.