已知抛物线及点,直线斜率为且不过点,与抛物线交于点、两点. (Ⅰ)求直线在轴上截距的取值范围;(Ⅱ)若、分别与抛物线交于另一点、,证明:、交于定点.
函数是奇函数.(1)求的值;(2)判断在区间上单调性并加以证明;
设二次函数f(x)=ax2+bx+c的图象过点(0,1)和(1,4),且对于任意的实数x,不等式f(x)≥4x恒成立.(1)求函数f(x)的表达式;(2)设g(x)=kx+1,若G(x)=在区间[1,2]上是增函数,求实数k的取值范围。
设函数f(x)=,则:(1)证明:f(x)+f(1﹣x)=1;(2)计算:f()+f()+f()+…+f().
(1)计算:+lg25+lg4++;(2)设集合A={x|≤2﹣x≤4},B={x|m﹣1<x<2m+1}.若A∪B=A,求m的取值范围.
设p:实数x满足x2-5ax+4a2<0(其中a>0),q:实数x满足2<x≤5(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若是的必要不充分条件,求实数a的取值范围.