如图,储油灌的表面积为定值,它的上部是半球,下部是圆柱,半球的半径等于圆柱底面半径.(1)试用半径表示出储油灌的容积,并写出的范围.(2)当圆柱高与半径的比为多少时,储油灌的容积最大?
在中,a、b、c分别是角A、B、C的对边,已知,, (I)求边AC的长度; (II)若BC=4,求角B的大小.
(本小题满分14分)已知函数,(x>0). (1)当0<a<b,且f(a)=f(b)时,求的值; (2)是否存在实数a,b(a<b),使得函数y=f(x)的定义域、值域都是[a,b],若存在,求出a,b的值,若不存在,请说明理由. (3)若存在实数a,b(a<b),使得函数y=f(x)的定义域为 [a,b]时,值域为 [ma,mb],(m≠0),求m的取值范围.
(本小题满分14分)已知函数在处的切线方程为 , (1)若函数在时有极值,求的表达式; (2)在(1)条件下,若函数在上的值域为,求m的取值范围; (3)若函数在区间上单调递增,求b的取值范围. [
(本小题满分14分)已知定义域为R的函数是奇函数. (1)求的值,并判断的单调性; (2)若对任意,不等式恒成立,求k的取值范围.
(本小题满分14分)向量满足,. (1)求关于k的解析式; (2)请你分别探讨⊥和∥的可能性,若不可能,请说明理由,若可能,求出k的值; (3)求与夹角的最大值.