如图,储油灌的表面积为定值,它的上部是半球,下部是圆柱,半球的半径等于圆柱底面半径.(1)试用半径表示出储油灌的容积,并写出的范围.(2)当圆柱高与半径的比为多少时,储油灌的容积最大?
(本小题满分12分)已知函数.(Ⅰ)求的最小正周期;(Ⅱ)若将的图象向右平移个单位,得到函数的图象,求函数在区间[0,π]上的最大值和最小值.
(本小题满分12分) 在中,角A,B,C所对的边分别为a,b,c, 若向量,, 且.(Ⅰ)求角A的大小;(Ⅱ)若的面积,求的值.
(本小题满分12分)已知命题:不等式对一切恒成立;命题:函数是增函数.若或为真,且为假,求实数的取值范围.
(本小题满分14分)已知函数,, 其中,是自然对数的底数.函数,.(Ⅰ)求的最小值;(Ⅱ)将的全部零点按照从小到大的顺序排成数列,求证:(1),其中;(2).
(本小题满分13分)如图,已知抛物线,过焦点F任作一条直线与相交于两点,过点作轴的平行线与直线相交于点(为坐标原点).(Ⅰ)证明:动点在定直线上;(Ⅱ)点P为抛物线C上的动点,直线为抛物线C在P点处的切线,求点Q(0,4)到直线距离的最小值.