已知数列和满足:,,,其中为实数,为正整数。(Ⅰ)证明:对任意的实数,数列不是等比数列;(Ⅱ)证明:当时,数列是等比数列;(Ⅲ)设为数列的前项和,是否存在实数,使得对任意正整数,都有?若存在,求的取值范围;若不存在,说明理由。
如图,在三棱柱ABC-A1B1C1中, CC1⊥底面ABC,AC=BC,M,N分别是CC1,AB的中点.(1)求证:CN⊥AB1;(2)求证:CN//平面AB1M.
设p;函数在上是增函数,q:函数的定义域为R.(1)若,试判断命题p的真假;(2)若命题p与命题q一真一假,试求实数的取值范围.
已知函数,其中常数.(1)求的单调区间;(2)如果函数在公共定义域D上,满足,那么就称 为与的“和谐函数”.设,求证:当时,在区间上,函数与的“和谐函数”有无穷多个.
如图,椭圆的离心率为,轴被曲线截得的线段长等于的短轴长。与轴的交点为,过坐标原点的直线与相交于点,直线分别与相交于点。(1)求、的方程;(2)求证:。(3)记的面积分别为,若,求的取值范围。
已知数列是等差数列,(1)判断数列是否是等差数列,并说明理由;(2)如果,试写出数列的通项公式;(3)在(2)的条件下,若数列得前n项和为,问是否存在这样的实数,使当且仅当时取得最大值。若存在,求出的取值范围;若不存在,说明理由。