已知复数z=x+yi(x,y∈R)在复平面上对应的点为M.(1)设集合P={-4,-3,-2,0},Q={0,1,2},从集合P中随机取一个数作为x,从集合Q中随机取一个数作为y,求复数z为纯虚数的概率;(2)设x∈[0,3],y∈[0,4],求点M落在不等式组:所表示的平面区域内的概率.
巳知椭圆的离心率是. ⑴若点P(2,1)在椭圆上,求椭圆的方程; ⑵若存在过点A(1,0)的直线,使点C(2,0)关于直线的对称点在椭圆上,求椭圆的焦距的取值范围.
已知四棱锥P-ABCD中,PB⊥平面ABCD,底面ABCD是直角梯形,∠ABC=∠BCD=90°,PB=BC=CD=AB.Q是PC上的一点,且PA∥平面QBD. ⑴确定Q的位置; ⑵求二面角Q-BD-C的平面角的余弦值.
已知向量,函数. ⑴设,x为某三角形的内角,求时x的值; ⑵设,当函数取最大值时,求cos2x的值.
学校餐厅每天供应500名学生用餐,每星期一有A, B两种菜可供选择。调查表明,凡是在这星期一选A菜的,下星期一会有改选B菜;而选B菜的,下星期一会有改选A菜。用分别表示第个星期选A的人数和选B的人数. ⑴试用表示,判断数列是否成等比数列并说明理由; ⑵若第一个星期一选A种菜的有200人,那么第10个星期一选A种菜的大约有多少人?
为了解某校学生参加某项测试的情况,从该校学生中随机抽取了6位同学,这6位同学的成绩(分数)如茎叶图所示. ⑴求这6位同学成绩的平均数和标准差; ⑵从这6位同学中随机选出两位同学来分析成绩的分布情况,设为这两位同学中成绩低于平均分的人数,求的分布列和期望.