已知向量a=(2,1),b=(x,y).(1)若x∈{-1,0,1,2},y∈{-1,0,1},求向量a∥b的概率;(2)若x∈[-1,2],y∈[-1,1],求向量a,b的夹角是钝角的概率.
如图,正方形所在的平面与平面垂直,是和的交点,,且.(1)求证:平面;(2)求二面角的大小.
已知数列满足(1)分别求的值。(2)猜想的通项公式,并用数学归纳法证明。
已知动圆与圆相切,且与圆相内切,记圆心的轨迹为曲线;设为曲线上的一个不在轴上的动点,为坐标原点,过点作的平行线交曲线于两个不同的点.(1)求曲线的方程;(2)试探究和的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;(3)记的面积为,求的最大值.
已知函数,,其中,为自然对数的底数.(1)若在处的切线与直线垂直,求的值;(2)求在上的最小值;(3)试探究能否存在区间,使得和在区间上具有相同的单调性?若能存在,说明区间的特点,并指出和在区间上的单调性;若不能存在,请说明理由.
已知数列满足:且.(1)令,判断是否为等差数列,并求出;(2)记的前项的和为,求.