已知数列满足:且.(1)令,判断是否为等差数列,并求出;(2)记的前项的和为,求.
(本小题满分12分)已知分别在射线(不含端点)上运动,,在中,角、、所对的边分别是、、. (Ⅰ)若、、依次成等差数列,且公差为2.求的值; (Ⅱ)若,,试用表示的周长,并求周长的最大值.
(本小题满分12分) 如图,边长为2的正方形中,点是的中点,点是的中点,将△、△分别沿、折起,使、两点重合于点,连接,. (Ⅰ)求证:; (Ⅱ)求二面角的余弦值.
(本小题满分12分) 甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响. (Ⅰ) 求甲获胜的概率; (Ⅱ) 求投篮结束时甲的投篮次数的分布列与期望
设函数。 (1)当时,求函数的定义域; (2)若函数的定义域为,试求的取值范围。
已知曲线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平 面直角坐标系,设直线的参数方程为(为参数)。 (1)求曲线的直角坐标方程与直线的普通方程; (2)设曲线与直线相交于两点,以为一条边作曲线的内接矩形,求该矩形的面积。