如图,点C为线段AB上任意一点(不与A、B重合),分别以AC、BC为一腰在AB的同侧作等腰△ACD和等腰△BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD交于点P,连接PC.(1)求证:△ACE≌△DCB;(2)请你判断△AMC与△DMP的形状有何关系并说明理由;(3)求证:∠APC=∠BPC.
如图,将边长为4的正方形置于平面直角坐标系第一象限,使AB边落在x轴正半轴上,且A点的坐标是(1,0).(1)直线经过点C,且与x轴交于点E,求四边形AECD的面积;(2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l的解析式;(3)若直线l1经过点F()且与直线y=3x平行.将(2)中直线l沿着y轴向上平移1个单位,交x轴于点M,交直线l1于点N,求△NMF的面积.
如图,已知点A(6,0),点P(x,y)在第一象限,且x+y=8,设△OPA的面积S.(1)求S关于x的函数解析式;(2)求x的取值范围;(3)求S=12时,P点的坐标.
如图,在平面直角坐标系中,点A,B在第一象限,AB∥x轴,AB=2,点Q(6,0),根据图象回答:(1)点B的坐标是 ;(2)分别求出OA,BC所在直线的解析式;(3)P是一动点,在折线OABC上沿O→A→B→C运动,不与O、C重合,点P(x,y),△OPQ的面积为S,求S与x的函数关系式,并指出自变量x的取值范围;(4)在给出的坐标系中画出S随x变化的函数图象.
如图,⊙O经过菱形ABCD的三个顶点A、C、D,且与AB相切于点A(1)求证:BC为⊙O的切线;(2)求∠B的度数.
2015年元旦,某商场开展购物抽奖活动,抽奖箱中有4个标号分别为1,2,3,4的质地、大小相同的小球,顾客任意摸取一个小球,然后放回,再摸取一个小球,若两次摸出的数字之和为“8”获一等奖,数字之和为“6”获二等奖,数字之和为其他数字则获三等奖,请用列举法分别求出顾客抽中一、二、三等奖的概率.