如图,将边长为4的正方形置于平面直角坐标系第一象限,使AB边落在x轴正半轴上,且A点的坐标是(1,0).(1)直线经过点C,且与x轴交于点E,求四边形AECD的面积;(2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l的解析式;(3)若直线l1经过点F()且与直线y=3x平行.将(2)中直线l沿着y轴向上平移1个单位,交x轴于点M,交直线l1于点N,求△NMF的面积.
先化简再求值:,其中是不等式组的整数解.
如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(0,3),C(1,0). (1)求此抛物线的解析式. (2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D. ①动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标; ②连接PA,以AP为边作图示一侧的正方形APMN,随着点P的运动,正方形的大小、位置也随之改变. 当顶点M或N恰好落在抛物线对称轴上时,求出对应的P点的坐标.(结果保留根号)
已知:∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B,如图(1).易证BD+AB=CB,过程如下:过点C作CE⊥CB于点C,与MN交于点E ∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE. ∵四边形ACDB内角和为360°,∴∠BDC+∠CAB=180°. ∵∠EAC+∠CAB=180°,∴∠EAC=∠BDC. 又∵AC=DC,∴△ACE≌△DCB,∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴BE=CB. 又∵BE=AE+AB,∴BE=BD+AB,∴BD+AB=CB. (1)当MN绕A旋转到如图(2)和图(3)两个位置时,其它条件不变,则BD、AB、CB满足什么样关系式,请写出你的猜想,并对图(2)给予证明. (2)MN在绕点A旋转过程中,当∠BCD=30°,BD=时,则CB=__________.
已知二次函数 (1)求证:不论a为何实数,此函数图象与x轴总有两个交点. (2)设a<0,当此函数图象与x轴的两个交点的距离为时,求出此二次函数的解析式. (3)在(2)的条件下,若此二次函数图象与x轴交于A、B两点,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由。
当抛物线的解析式中含有字母系数时,随着系数中的字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线y=x2-2mx+m2+2m-1①有y=(x-m)2+2m-1②, 所以抛物线顶点坐标为(m,2m-1),即x=m③,y=2m-1④. 当m的值变化时,x,y的值也随之变化,因而y的值也随x值的变化而变化. 将③代入④,得y=2x-1⑤.可见,不论m取任何实数,抛物线顶点的纵坐标y和横坐标x都满足关系式:y=2x-1; 根据上述阅读材料提供的方法,确定点(-2m, m-1)满足的函数关系式为_______. (2)根据阅读材料提供的方法,确定抛物线顶点的纵坐标y与横坐标x之间的关系式.