如图,BD是⊙O的直径,A、C是⊙O上的两点,且AB=AC,AD与BC的延长线交于点E.(1)求证:△ABD∽△AEB;(2)若AD=1,DE=3,求BD的长.
如图,在正方形 ABCD 中,点 G 在对角线 BD 上(不与点 B , D 重合), GE ⊥ DC 于点 E , GF ⊥ BC 于点 F ,连接 AG .
(1)写出线段 AG , GE , GF 长度之间的数量关系,并说明理由;
(2)若正方形 ABCD 的边长为1, ∠ AGF = 105 ° ,求线段 BG 的长.
在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.
(1)设矩形的相邻两边长分别为 x , y .
①求 y 关于 x 的函数表达式;
②当 y ⩾ 3 时,求 x 的取值范围;
(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?
如图,在锐角三角形 ABC 中,点 D , E 分别在边 AC , AB 上, AG ⊥ BC 于点 G , AF ⊥ DE 于点 F , ∠ EAF = ∠ GAC .
(1)求证: ΔADE ∽ ΔABC ;
(2)若 AD = 3 , AB = 5 ,求 AF AG 的值.
在平面直角坐标系中,一次函数 y = kx + b ( k , b 都是常数,且 k ≠ 0 ) 的图象经过点 ( 1 , 0 ) 和 ( 0 , 2 ) .
(1)当 − 2 < x ⩽ 3 时,求 y 的取值范围;
(2)已知点 P ( m , n ) 在该函数的图象上,且 m − n = 4 ,求点 P 的坐标.
为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).
某校九年级50名学生跳高测试成绩的频数表
组别 ( m )
频数
1 . 09 ~ 1 . 19
8
1 . 19 ~ 1 . 29
12
1 . 29 ~ 1 . 39
a
1 . 39 ~ 1 . 49
10
(1)求 a 的值,并把频数直方图补充完整;
(2)该年级共有500名学生,估计该年级学生跳高成绩在 1 . 29 m (含 1 . 29 m ) 以上的人数.