如图,在矩形ABCD中,AD=4,AB=m(m>4),点P是AB边上的任意一点(不与A、B重合),连结PD,过点P作PQ⊥PD,交直线BC于点Q.(1)当m=10时,是否存在点P使得点Q与点C重合?若存在,求出此时AP的长;若不存在,说明理由;(2)连结AC,若PQ∥AC,求线段BQ的长(用含m的代数式表示)(3)若△PQD为等腰三角形,求以P、Q、C、D为顶点的四边形的面积S与m之间的函数关系式,并写出m的取值范围.
小颖为九年级1班毕业联欢会设计了一个“配紫色“的游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,游戏者同时转动两个转盘,两个转盘停止转动时,若有一个转盘的指针指向蓝色,另一个转盘的指针指向红色,则”配紫色“成功,游戏者获胜,求游戏者获胜的概率。
小刘对本班同学的业余兴趣爱好进行了一次调查,她根据采集到的数据,绘制了下面的图1和图2请你根据图中提供的信息,解答下列问题:(1)在图1中,将“书画”部分的图形补充完整;(2)在图2中,求出“球类”部分所对应的圆心角的度数,并分别写出爱好“音乐”、“书画”、“其它“的人数占本班学生数的百分数;(3)观察图1和图2,你能得出哪些结论?(只要写出一条结论)
已知:如图,△ABC和△ECD都是等腰直角三角形,,D为AB边上一点,求证:(1)△ACE≌△BCD;(2)
已知:如图,在四边形ABCD中,AC与BD相交与点O,AB∥CD,,求证:四边形ABCD是平行四边形。
如图,在平面直角坐标系中,点,点分别在轴,轴的正半轴上,且满足.(1)求点,点的坐标.(2)若点从点出发,以每秒1个单位的速度沿射线运动,连结.设的面积为,点的运动时间为秒,求与的函数关系式,并写出自变量的取值范围.(3)在(2)的条件下,是否存在点,使以点为顶点的三角形与相似?若存在,请直接写出点的坐标;若不存在,请说明理由.