如图,在等腰三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE⊥DF,交AB于E,交BC于F.若AE=4,FC=3,求EF长.
如图,平面直角坐标系中,为坐标原点,抛物线交x轴于A、B两点(点A在点B的左侧),交y轴于点C,以OB、OC为边作矩形OBDC,CD交抛物线于G.(1)求OB和OC的长;(2)抛物线的对称轴在边OB(不包括O、B两点)上作平行移动,交x轴于点E,交CD于点F,交BC于点M,交抛物线于点P.设OE=m,PM=h,求h与m的函数关系式,并求PM的最大值;(3)连接PC,在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形与△BEM相似?若存在,求出相应的m的值,并判断△PCM的形状;若不存在,请说明理由.
如图所示,在平面内有一线段AB,分别过A点,B点向x轴作垂线,垂足分别为C、D,我们把线段CD称之为线段AB在x轴上的射影,线段CD的长称之为线段AB在x轴上的射影长.(1)双曲线上有两点A、B,A(m,4),B(n,1),求AB在x轴上的射影长;(2)直线的图象上有两点A、B,AB在x轴上的射影长为4,求AB的长;(3)已知抛物线和直线,其中、、满足,抛物线过点(1,0),且与直线相交于A、B两点,求线段AB在x轴上的射影长CD的取值范围.
如图,D为⊙O上一点,点C在直径BA的延长线上,∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线交CD的延长线于点E,若BC=6,tan∠CDA=,求BE的长.
如图所示,李华晚上在路灯下散步.已知李华的身高AB=1.8米,灯柱的高OP=O'P'=18米,两灯柱之间的距离OO'=30米.(1)若李华距灯柱OP的水平距离OA=18米,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值?若为定值,求出该定值;若不是请说明理由.
如某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:(1)求,的值;(2)若将各自选项目的人数按所占比例绘制成扇形统计图,求“长跑”对应扇形的圆心角的度数;(3)在选报“长跑”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,用列表法或树形图法求出所抽取的两名学生中恰有一名女生的概率.