((本小题满分12分)如图,在矩形中,,又⊥平面,.(Ⅰ)若在边上存在一点,使,求的取值范围;(Ⅱ)当边上存在唯一点,使时,求二面角的余弦值.
求出过定点且与抛物线只有一个公共点的直线的方程.
定长为的线段的端点在抛物线上移动,求中点到轴距离的最小值,并求出此时中点的坐标.
已知抛物线的焦点坐标是,准线方程是,求证:抛物线的方程为.
抛物线的顶点在原点,以轴为对称轴,经过焦点且倾斜角为的直线,被抛物线所截得的弦长为,试求抛物线方程.
抛物线上点到定点和焦点的距离之和的最小值为,求此抛物线的方程.