((本小题满分12分)如图,在矩形中,,又⊥平面,.(Ⅰ)若在边上存在一点,使,求的取值范围;(Ⅱ)当边上存在唯一点,使时,求二面角的余弦值.
已知角的终边与单位圆交于点P(,).(I)写出、、值;(II)求的值.
在数列的前n项和。当时,(1)求数列的通项公式;试用n和表示(2)若,证明:(3)当时,证明
在平面直角坐标系xOy中,已知三点A(-1,0),B(1,0),,以A、B为焦点的椭圆经过点C。(I)求椭圆的方程;(II)设点D(0,1),是否存在不平行于x轴的直线与椭圆交于不同两点M、N,使?若存在,求出直线斜率的取值范围;若不存在,请说明理由:(III)对于y轴上的点P(0,n),存在不平行于x轴的直线与椭圆交于不同两点M、N,使,试求实数n的取值范围。
已知(1)当x为何值时,取得最小值?证明你的结论;(2)设f(x)在[-1,1]上是单调函数,求a的取值范围。
在如图所示的多面体中,已知正方形ABCD和直角梯形ACEF所在的平面互相垂直,EC⊥AC,EF//AC,(1)求证:平面BEF⊥平面DEF;(2)求二面角A—BF—E的大小。