图10是小红设计的钻石形商标,△ABC是边长为2的等边三角形,四边形ACDE是等腰梯形,AC∥ED,∠EAC=60°,AE=1.(1)证明:△ABE≌△CBD;(2)图中存在多对相似三角形,请你找出一对进行证明,并求出其相似比(不添加辅助线,不找全等的相似三角形);(3)小红发现AM=MN=NC,请证明此结论;(4)求线段BD的长.
下面是某年参加国家教育评估的学校学生的数学平均成绩(x)的统计图,请根据所给信息,解答下列问题:
(1)本次共调查 所学校.
(2) 图能更好地说明一半以上学校的学生数学平均成绩在 60 ≤ x < 70 之间.
(3)估计我国150所学校中学生的数学平均成绩在 70 ≤ x < 80 的学校有多少所?
已知:抛物线 y = a x 2 + bx + c 与x轴交于点A(2,0)、B(4,0),且过点C(0,4).
(1)求出抛物线的解析式和顶点坐标.
(2)请你求出抛物线向左平移3个单位,再向上平移1.5个单位后抛物线的解析式.
如图,△ABC三个顶点的坐标分别为A(﹣1,3),B(﹣4,1),C(﹣2,1).
(1)请画出△ABC向右平移5个单位长度后得到的△A1B1C1.
(2)请画出△A1B1C1关于原点对称的△A2B2C2.
(3)求四边形ABA2B2的面积.
先化简,再求值: x 2 + 2 x + 1 2 x - 6 ÷ 1 + 4 x - 3 ,其中 x = tan 45 ° .
如图,在平面直角坐标系中,点O为坐标原点,直线 y =﹣ x + b 与坐标轴交于C,D两点,直线AB与坐标轴交于A,B两点,线段OA,OC的长是方程 x 2 ﹣ 3 x + 2 = 0 的两个根 ( OA > OC ) .
(1)求点A,C的坐标;
(2)直线AB与直线CD交于点E,若点E是线段AB的中点,反比例函数 y = k x ( k ≠ 0 ) 的图象的一个分支经过点E,求k的值;
(3)在(2)的条件下,点M在直线CD上,坐标平面内是否存在点N,使以点B,E,M,N为顶点的四边形是菱形?若存在,请直接写出满足条件的点N的坐标;若不存在,请说明理由.