在一个袋子中,有完全相同的4张卡片,把它们分别编号为l,2,3,4。(1)从袋子中随机取两张卡片.求取出的卡片编号之和等于4的概率:(2)先从袋子中随机取一张卡片,记该卡片的编号为a,然后将其放回,再从袋中随机取出一张卡片,级该卡片的编号为b,求满足的概率。
益趣玩具店购进一种儿童玩具,计划每个售价 36元,能盈利80﹪,在销售中出现了滞销,于是先后两次降价,售价降为25元。 (1)求这种玩具的进价。 (2)求平均每次降价的百分率(精确到0.1﹪)
如图,一架满载救援物资的飞机到达灾区的上空,在A处测得空投地点C的俯角=60°,测得地面指挥台B的俯角=30°。已知BC的距离是2000米,求此时飞机的高度(结果保留根号)
(1)计算:
如图,等圆 ⊙ O 1 和 ⊙ O 2 相交于A、B两点,⊙ O 2 经过 ⊙ O 1 , 两圆的连心线交 ⊙ O 1 于点 M , 交 A B 于点 N , 连结 B M , 已知 A B = 2 3
(1)求证: B M 是 ⊙ O 2 的切线; (2)求 A M 的长。
在矩形ABCD中,点P在AD上,AB=2,AP=1.将直角尺的顶点放在P处,直角尺的两边分别交AB,BC于点E,F,连接EF(如图①). (1)当点E与点B重合时,点F恰好与点C重合(如图②),求PC的长; (2)探究:将直尺从图②中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中,请你观察、猜想,并解答: (1)tan∠PEF的值是否发生变化?请说明理由; (2)直接写出从开始到停止,线段EF的中点经过的路线长.