在不透明的口袋中,有四只形状、大小完全相同的小球,四只小球上分别标有数字1,2,3,4. 小明先从盒子里随机取出一只小球(不放回),记下数字作为平面直角坐标系内点的横坐标;再由小华随机取出一只小球,记下数字作为平面直角坐标系内点的纵坐标.用列表法或画树状图,表示所有这些点的坐标;小刚为小明、小华两人设计了一个游戏:当上述(1)中的点在正比例函数y=2x-1图象上方时小明获胜,否则小华获胜. 你认为这个游戏公平吗?请说明理由.
解方程-=3-
计算(每小题5分,共10分): (1) (2)
一节数学课后,老师布置了一道课后练习题:如图6,在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,点P,D分别在AO和BC上,PB=PD,DE⊥AC于点E.求证:△BPO≌△PDE. 理清思路,完成解答. 本题证明的思路可用下列框图表示: 根据上述思路,请你完整地书写本题的证明过程. (2)特殊位置,证明结论. 若PB平分∠ABO,其余条件不变.求证:AP=CD.
道路改建工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的;若由甲队先做10天,剩下的工程再由甲、乙两队合做30天可以完成. (1)求甲、乙两队单独完成这项工程各需多少天; (2)已知甲队每天的施工费用为0.84万元,乙队每天的施工费用为0.56万元.工程预算的施工费用为50万元.为缩短工期以减少对住户的影响,拟安排甲、乙两队合做完成这项工程,则工程预算的施工费用是否够用?请给出你的判断,并说明理由.
已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD的延长线上取点E,使DE=DC,连接AE、BD. (1)求证:△AGE≌△DAB; (2)过点E作EF∥DB,交BC于点F,连接AF,求∠AFE的度数.