如图,抛物线与轴交于(,0)、(,0)两点,且,与轴交于点,其中是方程的两个根。(1)求抛物线的解析式;(2)点是线段上的一个动点,过点作∥,交于点,连接,当的面积最大时,求点的坐标;(3)点在(1)中抛物线上,点为抛物线上一动点,在轴上是否存在点,使以为顶点的四边形是平行四边形,如果存在,求出所有满足条件的点的坐标,若不存在,请说明理由。
根据第五次、第六次全国人口普查结果显示:某市常住人口总数由第五次的400万人增加到第六次的450万人,常住人口的学历状况统计图如下(部分信息未给出): 解答下列问题:计算第六次人口普查小学学历的人数,并把条形统计图补充完整;第六次人口普查结果与第五次相比,该市常住人口中高中学历人数增长的百分比是多少?
如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=900,D为AB边上一点,求证:△ACE≌△BCD已知AD=3,AB=7,求DE的长。
化简求值:,其中.
如图,二次函数与x轴交于A、B两点,与y轴交于C点,点P从A点出发,以1个单位每秒的速度向点B运动,点Q同时从C点出发,以相同的速度向y轴正方向运动,运动时间为t秒,点P到达B点时,点Q同时停止运动。设PQ交直线AC于点 (1)求直线AC的解析式; (2)设△PQC的面积为S,求S关于t的函数解析式; (3)在y轴上找一点M,使△MAC和△MBC都是等腰三角形。直接写出所有满足条件的M点的坐标; (4)过点P作PE⊥AC,垂足为E,当P点运动时,线段EG的长度是否发生改变,请说明理由。
已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△ABE和△APQ,连结QE并延长交BP于点F. (1)如图1,若AB=,点A、E、P恰好在一条直线上时,求此时EF的长(直接写出结果); (2)如图2,当点P为射线BC上任意一点时,猜想EF与图中的哪条线段相等(不能添加辅助线产生新的线段),并加以证明; (3)若AB=,设BP=4,求QF的长.