生活经验表明,靠墙摆放的梯子,当50° ≤ α ≤ 70° (α为梯子与地面所成的角),能够使人安全攀爬,现在有长为6米的梯子AB,试求能够使人安全攀爬时,梯子的顶端能达到的最大高度AC . (结果保留两个有效数字,sin70° ≈ 0.94,sin50° ≈ 0.77,cos70° ≈ 0.34 ,cos50° ≈ 0.64 )
已知:如图,DE⊥AC,∠AGF=∠ABC,∠1=20°,∠2=160°,试判断BF与AC的位置关系,并说明理由.
在直角坐标系中,A(-4,4),B(-3,2),C(-1,4),D(-2,5). (1)请在图中画出四边形ABCD,则四边形ABCD的面积为; (2)将四边形ABCD向右平移4个单位长度,向下平移6个单位长度,得到四边形 ,请在平面直角坐标系中画出四边形,并写出分别写出、、、的坐标.
先化简代数式,再从,,三个数中选一个恰当的数作为的值代入求值.
如图,已知抛物线与y轴交于点C,与x轴交于A、B两点,点A的坐标是(-1,0),O是坐标原点,且.点E为线段BC上的动点(点E不与点B,C重合),以E为顶点作,射线ET交线段OB于点F. (1) 求出此抛物线函数表达式,并直接写出直线BC的解析式; (2)求证:; (3)当为等腰三角形时,求此时点E的坐标; (4)点P为抛物线的对称轴与直线BC的交点,点M在x轴上,点N在抛物线上,是否存在以点A、M、N、P为顶点的平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理.某企业去年每月的污水量均为12000吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.1至6月,该企业向污水厂输送的污水量(吨)与月份(,且取整数)之间满足的函数关系如下表:
7至12月,该企业自身处理的污水量(吨)与月份(,且取整数)之间满足二次函数关系式,其图象如图所示.1至6月,污水厂处理每吨污水的费用(元)与月份之间满足函数关系式,该企业自身处理每吨污水的费用(元)与月份之间满足函数关系式;7至12月,污水厂处理每吨污水的费用均为2元,该企业自身处理每吨污水的费用均为1.5元. (1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出,与之间的函数关系式; (2)设该企业去年第月用于污水处理的费用为W(元),试求出W与之间的函数关系式; (3)请你求出该企业去年哪个月用于污水处理的费用W(元)最多,并求出这个最多费用.