(本小题满分8分)已知盒中装有仅颜色不同的玻璃球6个,其中红球2个、黑球3个、白球1个. (1)从中任取1个球, 求取得红球或黑球的概率;(2)列出一次任取2个球的所有基本事件;(3)从中取2个球,求至少有一个红球的概率.
已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=—1. (1)试求常数a、b、c的值; (2)试判断x=±1是函数的极小值点还是极大值点,并说明理由
圆柱形容器,其底面直径为2m,深度为1 m,盛满液体后以0.01m3/s的速率放出,求液面高度的变化率
已知函数,求的单调区间
设函数对任意实数都有且时。 (Ⅰ)证明是奇函数; (Ⅱ)证明在内是增函数; (Ⅲ)若,试求的取值范围。
如图,在三棱锥P-ABC中,AP⊥平面ABC,底面是斜边为AB的直角三角形,AE⊥PB于点E,AF⊥PC于点F,求证:平面PAB⊥平面AEF.