(本小题满分8分)已知盒中装有仅颜色不同的玻璃球6个,其中红球2个、黑球3个、白球1个. (1)从中任取1个球, 求取得红球或黑球的概率;(2)列出一次任取2个球的所有基本事件;(3)从中取2个球,求至少有一个红球的概率.
(本小题满分12分) 已知平面ABC,,AC=CB=AD=2,E是DC的中点,F是AB的中点。 (1)证明:; (2)求二面角C—DB—A的正切值。
已知数列的前n项和为,,满足是与-3的等差中项。 (1)求 (2)求数列的通项公式。
已知函数 (1)求函数的最小值和最小正周期; (2)求函数的单调递增区间。
设函数. (1)确定函数f (x)的定义域; (2)判断函数f (x)的奇偶性; (3)证明函数f (x)在其定义域上是单调增函数;
在数列中, (1)设,证明:数列是等差数列。 (2)求数列的前项和。