(本小题满分12分)自然状态下的鱼类是一种可再生的资源,为了持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响。用表示某鱼群在第年初的总量,,且。不考虑其他因素,设在第年内鱼群的繁殖量及被捕捞量都与成正比,死亡量与成正比,这些比例系数依次为正数其中称为捕捞强度。(1)求与的关系式;(2)设,为了保证对任意,都有,则捕捞强度的最大允许值是多少?证明你的结论。
已知. (1)化简; (2)若是第三象限角,且,求的值.
已知直线的极坐标方程为,圆M的参数方程为。求:(1)将直线的极坐标方程化为直角坐标方程; (2)求圆M上的点到直线的距离的最小值.
(本小题满分10分)某班主任对班级22名学生进行了作业量多少的调查,数据如下表:在喜欢玩电脑游戏的12中,有10人认为作业多,2人认为作业不多;在不喜欢玩电脑游戏的10人中,有3人认为作业多,7人认为作业不多.求: (1)根据以上数据建立一个列联表; (2)试问喜欢电脑游戏与认为作业多少是否有关系?
在平面直角坐标系中,以为极点,轴非负半轴为极轴建立坐标系,已知曲线的极坐标方程为,直线的参数方程为: (为参数),两曲线相交于两点. 求: (1)写出曲线的直角坐标方程和直线的普通方程; (2)若求的值.
已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.求: (1)求圆的直角坐标方程; (2)若是直线与圆面≤的公共点,求的取值范围.