(本小题满分12分)自然状态下的鱼类是一种可再生的资源,为了持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响。用表示某鱼群在第年初的总量,,且。不考虑其他因素,设在第年内鱼群的繁殖量及被捕捞量都与成正比,死亡量与成正比,这些比例系数依次为正数其中称为捕捞强度。(1)求与的关系式;(2)设,为了保证对任意,都有,则捕捞强度的最大允许值是多少?证明你的结论。
如图,在底面是直角梯形的四棱锥S-ABCD中,(1)求四棱锥S-ABCD的体积;(2)求证:(3)求SC与底面ABCD所成角的正切值
(本小题12分)(原创)函数,已知方程有三个实根即(1)求, 和的值.(结果用表示)(2)若且在处取得极值且试求此方程三个根两两不等时的取值范围.
(本小题12分)已知函数,函数的图像在点的切线方程是.(Ⅰ)求函数的解析式;(Ⅱ)若函数在区间上是单调函数,求实数的取值范围.
( 本小题12分) 某单位举办2010年上海世博会知识宣传活动,进行现场抽奖.盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案.抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖.卡片用后放回盒子,下一位参加者继续重复进行.(I)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人答:我只知道,从盒中抽取两张都是“世博会会徽”卡的概率是,求抽奖者获奖的概率;(Ⅱ)在(I)下,甲乙丙丁四人依次抽奖,至少有两人获奖的概率.
(本小题13分)已知函数(1)当时,解不等式;(2)若曲线的所有切线中,切线斜率的最小值为,求的值.