(本题满分12分)为了防止受到核污染的产品影响我国民众的身体健康,某地要求产品在进入市场前必须进行两轮核辐射检测,只有两轮都合格才能进行销售,否则不能销售.已知某产品第一轮检测不合格的概率为,第二轮检测不合格的概率为,每轮检测结果只有“合格”、“不合格”两种,且两轮检测是否合格相互没有影响.(Ⅰ)求该产品不能销售的概率;(Ⅱ)如果产品可以销售,则每件产品可获利40元;如果产品不能销售,则每件产品亏损80元(即获利元).已知一箱中有产品4件,记一箱产品获利X元,求EX.
已知函数,其中A、B、C是的三个内角,且满足,. (1)求的值; (2)若,且,求的值.
(本小题满分7分)选修4—5:不等式选讲 已知实数满足, 求证:(Ⅰ); (Ⅱ).
(本小题满分7分)《选修4-4:坐标系与参数方程》 在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为,曲线D的参数方程为(为参数). (Ⅰ)把C的极坐标方程化为直角坐标方程; (Ⅱ)判定曲线C与曲线D间的位置关系.
(本小题满分7分)选修4—2:矩阵与变换 已知直线在矩阵对应的变换作用下变为直线. (Ⅰ)求实数,的值; (Ⅱ)若点在直线上,且,求点的坐标.
已知点、为双曲线:的左、右焦点,过作垂直于轴的直线,在轴上方交双曲线于点,且,圆的方程是. (1)求双曲线的方程; (2)过双曲线上任意一点作该双曲线两条渐近线的垂线,垂足分别为、,求的值; (3)过圆上任意一点作圆的切线交双曲线于、两点,中点为,求证:.