(本小题满分12分)如图,已知平面,是矩形,,,是中点,点在边上.(I)求三棱锥的体积;(II)求证:;(III)若平面,试确定点的位置.
在中,已知角..的对边分别为,且.(1)求的大小;(2)若,试判断的形状.
设等差数列的前项和为,,.(1)求数列的通项公式;(2)设数列的前项和为,求证:.
如图,在平面直角坐标系中,椭圆过点,离心率,为椭圆的左右焦点.(1)求椭圆的标准方程;(2)设圆的圆心在轴上方,且圆经过椭圆两焦点.点为椭圆上的一动点,与圆相切于点.①当时,求直线的方程;②当取得最大值为时,求圆方程.
如图,在正方体的棱长为,为棱上的一动点. (1)若为棱的中点, ①求四棱锥的体积 ②求证:面面 (2)若面,求证:为棱的中点.
在平面直角坐标系中,已知圆经过,两点,且圆心在直线上.(1)求圆的标准方程;(2)过圆内一点作两条相互垂直的弦,当时,求四边形的面积.(3)设直线与圆相交于两点,,且的面积为,求直线的方程.