本着健康、低碳的生活理念,租自行车骑游的人越来越多。某自行车租车点的收费标准是每车每次租不超过两小时免费,超过两小时的收费标准为每小时2元(不足1小时的部分按1小时计算)。甲、乙独立地来该租车点租车骑游。设甲、乙不超过两小时还车的概率分别为; ;两小时以上且不超过三小时还车的概率分别为;两人租车时间都不会超过四小时。(Ⅰ)求出甲、乙所付租车费用相同的概率;(Ⅱ)设甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望;
设不等式组所表示的平面区域为Dn,记Dn内整点的个数为an(横纵坐标均为整数的点称为整点). (1)n=2时,先在平面直角坐标系中作出区域D2,再求a2的值; (2)求数列{an}的通项公式; (3)记数列{an}的前n项的和为Sn,试证明:对任意n∈N*,恒有<成立.
如图,已知双曲线=1(a>0,b>0),定点(c是双曲线的半焦距),双曲线虚轴的下端点为B.过双曲线的右焦点F(c,0)作垂直于x轴的直线交双曲线于点P,若点D满足(O为原点),且三点共线. (1)求双曲线的离心率; (2)若a=2,过点B的直线l交双曲线的左、右支于M、N两点,且△OMN的面积S△OMN=,求l的方程.
已知函数在上是减函数. (1)求实数的取值范围; (2)设,若对任意实数,不等式恒成立,求实数的最小值.
如图,已知三棱锥P-ABC中,PC⊥平面ABC,AB⊥BC,PC=BC=4,AB=2,E、F分别是PB、PA的中点. (1)求证:侧面PAB⊥侧面PBC; (2)求三棱锥P-CEF的外接球的表面积.
某中学高三(1)班共有50名学生,他们每天自主学习的时间在180到330分钟之间,将全班学生的自主学习时间作分组统计,得其频率分布如下表所示:
(1)求表中a、b、c的值; (2)某课题小组为了研究自主学习时间与成绩的相关性,需用分层抽样的方法从这50名学生中随机抽取20名作统计分析,则在第二组学生中应抽取多少人? (3)已知第一组学生中有3名男生和2名女生,从这5名学生中随机抽取2人,求恰好抽到1名男生和1名女生的概率.