本着健康、低碳的生活理念,租自行车骑游的人越来越多。某自行车租车点的收费标准是每车每次租不超过两小时免费,超过两小时的收费标准为每小时2元(不足1小时的部分按1小时计算)。甲、乙独立地来该租车点租车骑游。设甲、乙不超过两小时还车的概率分别为; ;两小时以上且不超过三小时还车的概率分别为;两人租车时间都不会超过四小时。(Ⅰ)求出甲、乙所付租车费用相同的概率;(Ⅱ)设甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望;
(本小题满分12分)探究函数的最小值,并确定取得最小值时x的值.列表如下:
请观察表中y值随x值变化的特点,完成以下的问题. (1)函数在区间(0,2)上递减;函数在区间上递增.当时,. (2)证明:函数在区间(0,2)递减. (3)思考:函数时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)
(本小题满分12分)如图,在平面直角坐标系中,以轴为始边做两个锐角,它们的终边分别与单位圆相交于A、B两点,已知A、B的横坐标分别为. (1)求的值; (2)求的值.
(本小题满分10分)已知, (1)求的夹角;(2)求的值.
(本小题满分12分)已知数列. (1)求数列的通项公式; (2)设,探求使恒成立的的最大整数值.
(本小题满分12分) 港口A北偏东30°方向的C处有一检查站,港口正东方向的B处有一轮船,距离检查站为31海里,该轮船从B处沿正西方向航行20海里后到达D处观测站,已知观测站与检查站距离21海里,问检查站C离港口A有多远?