某中学的数学测试中设置了“数学与逻辑”和“阅读与表达”两个内容,成绩分为A、B、C、D、E五个等级。某班考生两科的考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩等级为B的考生有10人 (1)求该班考生中“阅读与表达”科目中成绩等级为A的人数;(2)若等级A、B、C、D、E分别对应5分、4分、3分、2分、1分,该考场中有2人10分,3人9分,从这5人中随机抽取2人,求2人成绩之和为19分的概率.
已知点,,动点的轨迹曲线满足,,过点的直线交曲线于、两点.(Ⅰ)求的值,并写出曲线的方程;(Ⅱ)求△面积的最大值.
如图,已知平行四边形和矩形所在的平面互相垂直,,是线段的中点.(Ⅰ)求二面角的正弦值;(Ⅱ)设点为一动点,若点从出发,沿棱按照的路线运动到点,求这一过程中形成的三棱锥的体积的最小值.
在直角坐标平面上有一点列 对一切正整数n,点在函数的图象上,且的横坐标构成以为首项,-1为公差的等差数列.(Ⅰ)求点的坐标;(Ⅱ)设抛物线列C1,C2,C3,…,Cn,…中的每一条的对称轴都垂直于x轴,抛物线Cn的顶点为Pn,且过点Dn(0,).记与抛物线Cn相切于点Dn的直线的斜率为kn,求
已知函数.(Ⅰ)求函数的最小正周期和值域;(Ⅱ)若为第二象限角,且,求的值.
已知函数f(x)=,其中a>0. (Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)若在区间上,f(x)>0恒成立,求a的取值范围.