如图,已知平行四边形和矩形所在的平面互相垂直,,是线段的中点.(Ⅰ)求二面角的正弦值;(Ⅱ)设点为一动点,若点从出发,沿棱按照的路线运动到点,求这一过程中形成的三棱锥的体积的最小值.
已知函数f(x)=2sinωxcosωx﹣2sin2ωx+(ω>0),直线x=x1,x=x2是函数y=f(x)的图象的任意两条对称轴,且|x1﹣x2|的最小值为.(Ⅰ)求ω的值; (Ⅱ)求函数f(x)的单调增区间;(Ⅲ)若f(α)=,求sin(π﹣4α)的值.
如图所示,PA⊥平面ABCD,四边形ABCD为正方形,且E,F,G,H分别是线段PA、PD、CD、BC的中点.(1)求证:BC∥平面EFG;(2)DH⊥平面AEG.
在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cos,=3.(1)求△ABC的面积;(2)若c=1,求a、sinB的值.
设函数f(x)=x2(ex﹣1)+ax3(1)当时,求f(x)的单调区间;(2)若当x≥0时,f(x)≥0恒成立,求a的取值范围.
△ABC中,角A、B、C对边分别是a、b、c,满足2=a2﹣(b+c)2.(Ⅰ)求角A的大小;(Ⅱ)求2cos2﹣sin(﹣B)的最大值,并求取得最大值时角B、C的大小.