某班数学兴趣小组有男生三名,分别记为,女生两名,分别记为,现从中任选2名学生去参加校数学竞赛.(1)写出这种选法的样本空间;(2)求参赛学生中恰有一名男生的概率;(3)求参赛学生中至少有一名男生的概率.
(本小题满分12分)已知椭圆的左右焦点分别是,直线的方程是,点是椭圆上动点(不在轴上),过点作直线的垂线交直线于点,当垂直轴时,点的坐标是. (Ⅰ)求椭圆的方程; (Ⅱ)判断点运动时,直线与椭圆的公共点个数,并证明你的结论.
(本小题满分12分)如图,已知在直三棱柱中, ,,点D是线段的中点. (Ⅰ)求证:∥平面; (Ⅱ)当三棱柱的体积最大时,求直线与平面所成角的正弦值.
某校男女篮球队各有10名队员,现将这20名队员的身高绘制成如下茎叶图(单位:cm).男队员身高在180cm以上定义为“高个子”,女队员身高在170cm以上定义为“高个子”,其他队员定义为“非高个子”.用分层抽样的方法,从“高个子”和“非高个子”中共抽取5名队员. (Ⅰ)从这5名队员中随机选出2名队员,求这2名队员中有“高个子”的概率; (Ⅱ)求这5名队员中,恰好男女“高个子”各1名队员的概率.
(本小题满分12分)已知函数,,且,. (Ⅰ)求函数的单调递增区间; (Ⅱ)若,,求的值.
(本小题满分10分)选修:不等式选讲 已知函数, (Ⅰ)解关于的不等式; (Ⅱ)若函数的图像恒在函数图像的上方,求实数的取值范围.