.已知直线经过椭圆的左顶点A和上顶点D,椭圆C的右顶点为B,点P是椭圆C上位于轴上方的动点,直线AP,BP与直线分别交于M,N两点.(1)求椭圆C的方程;(2)求线段MN的长度的最小值;(3)当线段MN的长度最小时,Q点在椭圆上运动,记△BPQ的面积为S,当S在上变化时,讨论S的大小与Q点的个数之间的关系.
(本小题12分)已知c>0,设p:函数在R上单调递减;q:不等式>1的解集为R,如果“p或q”为真,且“p且q”为假,求c的取值范围。
(本小题10分)已知圆与y轴相切,圆心在直线x-3y=0,且这个圆经过点A(6,1),求该圆的方程。
.已知向量,且,⑴求的取值范围;⑵求证;⑶求函数的取值范围.
.函数f(x)=,满足f()=f(0),⑴求函数f(x)的最小正周期;⑵求函数f(x)在上的最大值和最小值.
.定义域为R的函数f(x)=a-2bcosx(b>0)的最大值为,最小值为,求a,b 的值.