设是虚数,是实数,且,求的值及的实部的取值范围
第十一届西博会于2010年10月22日至26日在蓉举行,本届西博会以“绿色改变生活,技术引领发展”为主题。如此重要的国际盛会,自然少不了志愿者这支重要力量,“志愿者,西博会最亮丽的风景线”,通过他们的努力和付出,已把志愿者服务精神的种子播撒到人们心中。某大学对参加了本次西博会的该校志愿者实施“社会教育实践”学分考核,因该批志愿者表现良好,该大学决定考核只有合格和优秀两个等次,若某志愿者考核为合格,授予0.5个学分;考核为优秀,授予1个学分。假设该校志愿者甲、乙、丙考核为优秀的概率分别为、、,他们考核所得的等次相互独立。(I)求在这次考核中,志愿者甲、乙、两三人中至少有一名考核为优秀的概率;(II)求在这次考核中甲、乙、丙三名志愿者所得学分之和为整数的概率。
把正方形ABCD沿其对角线AC折成二面角DACB后,连结BD,得到如图所示的几何体,已知点O、E、F分别为线段AC、AD、BC的中点。(I)求证:AB//平面EOF;(II)求二面角EOFB的大小。
已知ABC中,内角A、B、C所对边的长分别为a、b、c,tan(B+)=(I)求角B的大小;(II)若=4,a=2c,求b的值
设,点在轴上,点在 轴上,且(1)当点在轴上运动时,求点的轨迹的方程;(2)设是曲线上的点,且成等差数列,当的垂直平分线与轴交于点时,求点坐标.
一投掷飞碟的游戏中,飞碟投入红袋记2分,投入蓝袋记1分,未投入袋记0分.经过多次试验,某人投掷100个飞碟有50个入红袋,25个入蓝袋,其余不能入袋.(1)求该人在4次投掷中恰有三次投入红袋的概率;(2)求该人两次投掷后得分的数学期望.