(满分14分)设函数的定义域是R,对于任意实数,恒有,且当时,。⑴求证:,且当时,有;⑵判断在R上的单调性;⑶设集合,集合,若A∩B=,求a的取值范围。
设命题:函数是R上的减函数,命题q:在上的值域为,若“或”为真命题,“且”为假命题,求实数a的取值范围.
已知曲线C的极坐标方程 是=1,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数)。(1)写出直线与曲线C的直角坐标方程;(2)设曲线C经过伸缩变换得到曲线,设曲线上任一点为,求的最小值。
记关于x的不等式<0 (a>0).的解集为P,不等式|x-1|≤1的解集为Q.(1)求a=3,求P;(2)若Q⊆P,求正数a的取值范围.
已知集合A={x|mx2-2x+3=0,m∈R}.(1)若A是空集,求m的取值范围;(2)若A中只有一个元素,求m的值;(3)若A中含有两个元素,求m的取值范围.
设椭圆:的左、右焦点分别为,已知椭圆上的任意一点,满足,过作垂直于椭圆长轴的弦长为3.(1)求椭圆的方程;(2)若过的直线交椭圆于两点,求的取值范围.