如图所示,在棱长为2的正方体中,、分别为、的中点. (1)求证: (1)、//平面;(2)、求证:;(3)、求三棱锥的体积.
(本小题满分13分)已知:若是公差不为0的等差数列的前项和,且、、成等比数列。 (1)求:数列、、的公比; (2)若,求:数列的通项公式。
(本小题满分13分)已知:函数(其中)的图象与轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为。 (1)求:的解析式; (2)当,求:函数的值域。
已知是圆上满足条件的两个点,其中是坐标原点,分别过作轴的垂线段,交椭圆于点,动点满足(I)求动点的轨迹方程.(II)设分别表示和的面积,当点在轴的上方,点在轴的下方时,求 的最大面积.
如图,正方形所在平面与圆所在平面相交于,线段为圆的弦,垂直于圆所在平面,垂足是圆上异于的点,,圆的直径为, 1)求证:平面平面2)求二面角的平面角的正切值.
若抛物线的焦点与椭圆的上焦点重合,1)求抛物线方程.2)若是过抛物线焦点的动弦,直线是抛物线两条分别切于的切线,求的交点的纵坐标.