如图所示,在棱长为2的正方体中,、分别为、的中点. (1)求证: (1)、//平面;(2)、求证:;(3)、求三棱锥的体积.
在△ABC中,内角A,B,C的对边分别是a,b,c,且a2=b2+c2+ab. (1)求A. (2)设a=,S为△ABC的面积,求S+3cosBcosC的最大值,并指出此时B的值.
已知函数f(x)=sinωxcosωx-cos2ωx,其中ω为使f(x)能在x=时取得最大值的最小正整数. (1)求ω的值. (2)设△ABC的三边长a,b,c满足b2=ac,且边b所对的角θ的取值集合为M,当x∈M时,求f(x)的值域.
如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上. (1)求渔船甲的速度. (2)求sinα的值.
已知函数f(x)=sinωx-sin2+(ω>0)的最小正周期为π. (1)求ω的值及函数f(x)的单调递增区间. (2)当x∈时,求函数f(x)的取值范围.
设△ABC的内角A,B,C的对边分别为a,b,c,(a+b+c)(a-b+c)=ac. (1)求B. (2)若sinAsinC=,求C.