如图7.在⊙O中.弦BC垂直于半径OA.垂足为E.D是优弧上一点.连接BD.AD.OC,∠ADB=30°.(1)求∠AOC的度教;(2)若弦BC=6cm.求图中阴影部分的面积.
(本题8分)已知:△ABC与△EDF都是腰长为9的等腰直角三角形,如图1摆放固定△ABC,将△DEF绕点A顺时针旋转,当DE与AB重合时,旋转中止.在旋转过程中,设DE、DF(或它们的延长线)分别交直线BC于G、H,如图2.(1)请写出图2中所有与△AGC相似的三角形:________________________________,选择其一说明理由;(2)当△AGH为等腰三角形时,请直接写出CG的长.
(本题8分)某服装店老板到厂家选购A、B两种型号的服装,它们的进价及获利如右表所示.(1)根据市场需求,服装店老板决定,购进B型服装的数量要比购进A型服装数量的2倍少3件,且A型服装最多可购进28件,这样服装全部售出后,可使总的获利不少于1534元.问有几种进货方案?请求出所有的进货方案.(2)采用哪种方案时,可获得最大利润,最大利润为多少?
(本题6分)小青同学想利用影长测量学校旗杆AB的高度.某一时刻他测得长1米的标杆的影长为1.4米,与此同时他发现旗杆AB的一部分影子BD落在地面上,另一部分影子CD落在楼房的墙壁上,分别测得其长度为11.2米和2米,如图所示.请你帮他求出旗杆AB的高度.
(本题6分)如图,直线AG交□ABCD的对角线BD于点E,交BC于点F,交DC的延长线于G.(1)请找出一个与△ADG相似的三角形,并说明理由;(2)若点F恰为BC的中点,且△BEF的面积为6,求△ADE的面积.
(本题6分)已知格点△ABC.(1)画出与△ABC相似的格点△A1B1C1,使△A1B1C1与△ABC的相似比为2;(2)画出与△ABC相似的格点△A2B2C2,使△A2B2C2与△ABC的相似比为;(3)格点△A1B1C1和格点△A2B2C2的相似比为 .